

Natural Language Processing Tasks and Methods

Challenges for Emotion Analysis and Generation

ZPID, Dec 13, 2023

Roman Klinger roman.klinger@ims.uni-stuttgart.de

©roman_klinger in romanklinger https://www.romanklinger.de/

About Myself

- 1999–2006: Studies at University of Dortmund: Computer science with minor psychology
- 2006–2010: Doctoral studies at Fraunhofer SCAI, St. Augustin: Biomedical text mining, machine learning
- 2010, 2013: Research visits at UMass Amherst: Probabilistic machine learning, MCMC inference
- 2011–2012: Postdoc at Fraunhofer SCAI:
- Social media mining, eGovernment

 2013–2014: Postdoc at Bielefeld University:
 - Sentiment analysis, opinion mining
- 2015: Co-Founder of Semalytix GmbH (exit 2020)
 Social Media Health Mining
- 2014–2024: (Senior) Lecturer/apl. Prof at IMS, Uni Stuttgart Natural Language Understanding and Generation
- 03/2024: Full Professor for Foundations of NLP, Uni Bamberg

Natural Language Processing Tasks

NLP Research Methods •000000000000000

What does natural language processing research look like?



- NLP research does barely attempt to solve everything that humans can do.
- Instead: predefined (narrow) tasks.
- Some tasks are established and well defined.
- Others are still in the process of formalization.
- We will now look at a couple of examples.

Example Task: Named Entity Recognition

Example Input (one of many) to Instruct an Automatic Machine Learning Model

Input: Both Kai Sassenberg and André Bittermann work at the ZPID.

Output: Kai Sassenberg; André Bittermann

Application

Input: Roman Klinger works at the University of Stuttgart.

Output: Roman Klinger

- I specified the task with an example (standard machine learning setup: supervised learning).
- An alternative task specification would be an instruction: "Annotate all person names."

 NLP Research Methods
 EA
 Zero-Shot Learning
 Appraisal-based EA
 Prompt Search
 Take Home

 00●0000000000
 00000
 00000000000
 0000000000
 0000
 0
 0

Example Task: Machine Translation de-en

Example

Input: Roman Klinger arbeitet an der Uni Stuttgart.

Output: Roman Klinger works at the University of Stuttgart.

Example Task: Conditional Text Generation

Example

Input: "When he walked into the restaurant", Joy

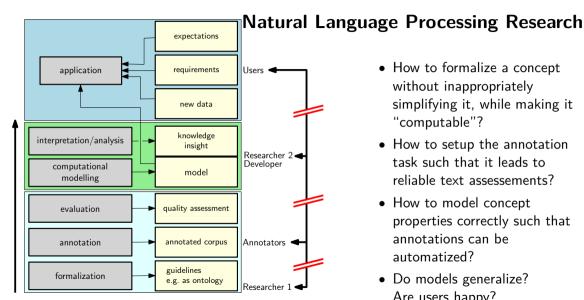
Output: "he was delighted to see that his husband was already there."

Example Task: Natural Language Inference

Example

NLP Research Methods

- Input: "A soccer game with multiple males playing.";
 "Some men are playing a sport."
- Output: entailment
- Input: "A man inspects the uniform of the person."; "The man is sleeping."
- Output: contradiction



- How to formalize a concept without inappropriately simplifying it, while making it "computable"?
- How to setup the annotation task such that it leads to reliable text assessements?
- How to model concept properties correctly such that annotations can be automatized?
- Do models generalize? Are users happy?

Annotation Challenges

Questions

NLP Research Methods

- Is the task objectively decidable? (entities vs. entailment or translation)
- Is the text alone sufficient to solve the task or is more context needed?
 (textual entailment vs. multimodal data or author profiling)
- Is it a classification or regression task? (emotion classification vs. arousal regression)

Implications

- Do we have access to the context? How much to show?
- Show isolated instance or request comparative annotations?
- Carefully train annotation experts or do crowdsourcing?

Modeling

NLP Research Methods

Find a function that takes:

- text (and additional information) as input
- and automatically predicts output/annotation.

Modeling Approaches

NI P Research Methods

- Rule-based methods, lexicon-based approaches
 - + Transparent
 - + Can be well grounded in theories
 - Often conceptually too simple
 - Difficult to achieve good performance
- Machine Learning/Deep Learning, Supervised or via Reinforcement Learning
 - + Learns the task from data
 - + No need to fully specify the task manually
 - o SOTA: Fine-tuning a pretrained language model
 - Data is required
 - Prone to overfitting to data
- Prompting, Prompt Learning; Learning from Instructions
 - + Potentially good generalization, potentially only needs few example instances
 - Needs a large (instruction-tuned) language model

Prompting with Instruction-tuned

Step 1: Train a model to understand language: Language modeling objective

- Input: "I want to eat" Output: "Spaghetti".
- Observation: Input/Output pairs can be created without human supervision!

Step 2: Fine-tune this model to solve instructions

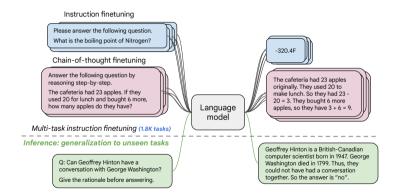
- Input: "Classify the sentiment: 'I like the company'" Output: "Positive".
- Obs.: We need many tasks & huge models to achieve generalization across tasks.

Step 3: Fine-tune with reinforcement learning from human-feedback on unseen tasks

- Given a human input and a model's output, let a human judge it's quality.
- Observation: We need many humans to do that.

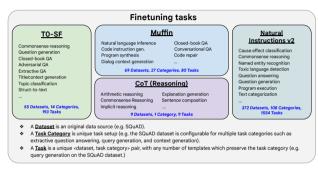
Example: Flan-T5 (1)

NLP Research Methods

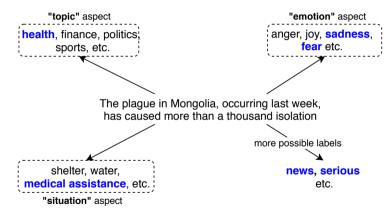


Example: Flan-T5 (2)

NI P Research Methods



Text Classification as Natural Language Inference



W. Yin et al. (2019). "Benchmarking Zero-shot Text Classification: Datasets, Evaluation and Entailment Approach". In: EMNLP-IJCNLP

NLP Research Methods

Observation

All three model types can be used for zero-shot text analysis

- Models that predict the next word or a missing word
 - " 'He is happy.' The sentiment polarity of this statement is"
- Models tuned for natural language inference
 - "He is happy" "This sentence is positive."
- Instruction-tuned models
 - "What is the sentiment of the following sentence 'He is happy'? Answer with a digit only where 1 is positive and 2 is negative."

What's next?

NI P Research Methods

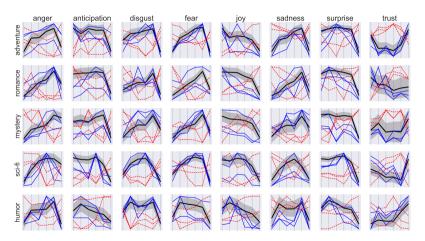
- We have now seen a set of methods to solve NLP tasks.
 - NLI-based Zero-Shot Predictions
 - Fine-tuning language models; traditional ML/DL
 - Prompting with Instruction-tuned models
- I will now introduce emotion analysis.
- Then I will show three examples from this area with different methods:
 - NLI-based zero-shot emotion classification
 - Traditional ML for appraisal-based corpus creation
 - Prompt-based affective text generation

Outline

- 1 NLP Research Methods
- 2 Emotion Analysis
- 3 Zero-Shot Learning for Emotion Classificatio
 - 4 Appraisal-based Emotion Analysis
- 5 Prompt Search for Text Generation
- 6 Take Hom

Emotion Analysis: What we want to do.

Literary Studies



Kim et al., 2017.

Investigating the Relationship between Literary Genres and Emotional Plot Development. LaTeCH@ACL

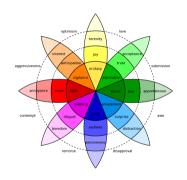
Dominant Emotions Expressed in News Articles

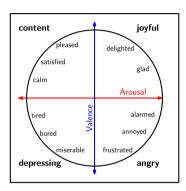
Emotion	Dominant Emotion		
Anger	The Blaze, The Daily Wire, BuzzFeed		
Annoyance	Vice, NewsBusters, AlterNet		
Disgust	BuzzFeed, The Hill, NewsBusters		
Fear	The Daily Mail, Los Angeles Times, BBC		
Guilt	Fox News, The Daily Mail, Vice		
Joy	Time, Positive.News, BBC		
Love	Positive.News, The New Yorker, BBC		
Pessimism	MotherJones, Intercept, Financial Times		
Neg. Surprise	The Daily Mail, MarketWatch, Vice		
Optimism	Bussines Insider, The Week, The Fiscal Times		
Pos. Surprise	Positive.News, BBC, MarketWatch		
Pride	Positive.News, The Guardian, The New Yorker		
Sadness	The Daily Mail, CNN, Daily Caller		
Shame	The Daily Mail, The Guardian, The Daily Wire		
Trust	The Daily Signal, Fox News, Mother Jones		

Bostan et al., 2020.

GoodNewsEveryone: A Corpus of News Headlines Annotated with Emotions, Semantic Roles, and Reader Perception. LREC

How to define a categorical system of emotions?





- Emotion models in psychology explain how emotions are developed.
- Text analysis models learn to associate textual realizations to emotion concepts. They do not (explicitly?) use knowledge from such theories.

Outline

- 1 NLP Research Methods
- 2 Emotion Analysis
- 3 Zero-Shot Learning for Emotion Classification
- 4 Appraisal-based Emotion Analysis
- 5 Prompt Search for Text Generation
- 6 Take Home

ZSL for Emotion Classification

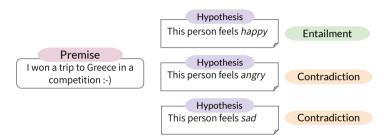
Sadness

anarensivene

- Often used labels in emotion classification in text: Ekman's basic emotions or a subset from Plutchik's wheel
- Sometimes domains require specific sets
- "Joy, insecurity, annovance, relaxation, and boredom" to model emotions of drivers (Cevher, Zepf, Klinger, KONVENS 2019)
- "Aesthetic emotions" for poetry (beauty, awe, suspense, uneasiness, sadness, ...) (Haider, Eger, Kim, Klinger, Menninghaus, LREC 2020)
- Do we need to create an emotion corpus with domain specific labels for every new application domain where the label set changes?

Surprise

Emotion ZSL as Natural Language Inference



- Does it matter which NLI model we use as a backbone?
- How to represent the emotion?
- Does the hypothesis formulation need to be specific for a particular domain?

F. M. Plaza-del Arco et al. (2022). "Natural Language Inference Prompts for Zero-shot Emotion Classification in Text across Corpora". In: COLING

Emotion Hypotheses

Emo-Name

angry

Expr-Emo

This text expresses anger

Feels-Emo

This person feels anger

WN-Def

This person expresses a strong emotion; a feeling that is oriented toward some real or supposed grievance Emo-S

Expr.-S

Same prefix + anger, annoyance, rage, outrage, fury,

Feels.-S

irritation

Pretrained NLI Models

Data Set for Pretraining: MultiNLI Corpus, 433k sentence pairs:

Examples				
Premise	Label	Hypothesis		
Fiction				
The Old One always comforted Ca'daan, except today.	neutral	Ca'daan knew the Old One very well.		
Letters				
Your gift is appreciated by each and every student who will benefit from your generosity. $ \\$	neutral	Hundreds of students will benefit from your generosity.		
Telephone Speech				
yes now you know if if everybody like in August when everybody's on vacation or something we can dress a little more casual or	contradiction	August is a black out month for vacations in the company.		
9/11 Report				
At the other end of Pennsylvania Avenue, people began to line up for a White House tour. $ \\$	entailment	People formed a line at the end of Pennsylvania Avenue.		

- https://cims.nyu.edu/~sbowman/multinli/
- Pretrained models from Huggingface, we use RoBERTa, BART, and DeBERTa

Data Sets

- TEC (Mohammad 2012):
 - Twitter corpus, automatically labeled with emotion hashtags

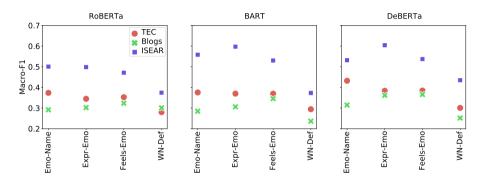
 Be the greatest dancer of your life! practice daily positive habits. [JOY]
- ISEAR (Scherer 1997):

 Descriptions of emotional events, triggered by emotion name

 When I was involved in a traffic accident. [FEAR]
- Blogs (Aman 2007):
 Crowdsourced annotations of sentences from blogs
 - I've never missed anyone so much as you. [SADNESS]

Emotion labels: anger, fear, joy, sadness, disgust, surprise, guilt, shame

The role of the NLI model



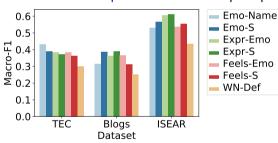
- Does the choice of the NLI model matter?
 - Performance differences between data sets are (mostly) independent of model
- Does the prompt matter regarding the data set?
 - WN-Def always lowest performance

The role of the NLI model

- If one NLI model performs ZSL well on some domains, it also does so on others.
- That's great! New, better models probably improve the results across domains.

The role of the prompt design

Is the emotion representation in the prompt specific to a domain/dataset?



- TEC: single emotion names work better than with synonyms
- BLOGS: synonyms harm the performance for Feels-Emo/S prompts
- Generally: synonyms help, except for some cases, in which annotaton procedure might be the reason

The role of the prompt design (3)

There is not a single prompt which works well across all domains.

But: Putting multiple prompts together in a model ensemble works nearly en par with individual single prompts.

Conclusion

- We showed the first evaluation of prompts across domains for emotion ZSL classification.
- The concrete NLI model which forms the backbone seems not to matter.
- There is not one individual prompt which works best for each domain

Where are we?

- We wanted to achieve a domain-independent and label-set independent model.
- We did pretty much achieve this, but the performance is lower than traditional machine learning methods.

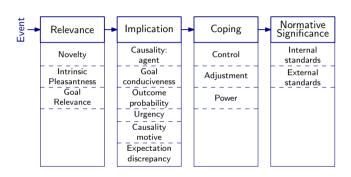
Outline

- 1 NLP Research Methods
- 2 Emotion Analysis
- 3 Zero-Shot Learning for Emotion Classification
- 4 Appraisal-based Emotion Analysis
- 5 Prompt Search for Text Generation
- 6 Take Hom

Appraisal Theories

- Appraisal theories explain the relation between emotions based on other dimensions.
- If we can build appraisal predictors, this might help to have more robust emotion prediction models.

Cognitive Appraisal in Scherer's Component Process model



K.R. Scherer (2001). Appraisal Considered as a Process of Multilevel Sequential Checking.

Perhaps appraisals are an alternative, more general approach to emotion analysis?

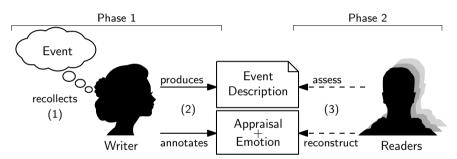
Research Questions

- Can appraisals be annotated reliably?
- Can we predict appraisal variables from event descriptions?
- Do appraisals help emotion categorization?

E. Troiano et al. (2023). "Dimensional Modeling of Emotions in Text with Appraisal Theories: Corpus Creation, Annotation Reliability, and Prediction". In: Computational Linguistics 49.1

J. Hofmann et al. (2020). "Appraisal Theories for Emotion Classification in Text". In: COLING

Approach



• Production: 550 event descriptions for anger, boredom, disgust, fear, guilt/shame, joy, pride, relief, sadness, surprise, trust, no emotion

Examples

pride I baked a delicious strawberry cobbler.

fear I felt ... when there was a power outage in my home. That day, my wife and I were cuddling in the sitting room when a thunderstorm started. Then ... filled me when thunder hit our roof and all the lights went off.

joy I found the perfect man for me, and the more time goes on, the more I realized he was the best person for me. Every day is a

Questions and Answers

- Do readers agree more with each other than with the writers?
 (does the writer make use of information that the readers do not have)
 - Yes, a bit for emotions; clearly for the appraisals.
- Does it matter if annotators share demographic properties?
 - Females agree more with each other, but men less.
 - People of similar age agree more.
- Does personality matter?
 - Extraverted, conscientious, agreeable annotators perform better.

Setup:

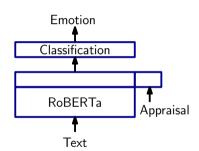
- ullet Filter instances for attribute, compare with ${\sf F}_1/{\sf RMSE}$
- · Significance test with bootstrap resampling for .95 confidence interval

Examples (writer/reader/avg. writer-reader agreement as error)

- All writers/readers agree on emotion, low average appraisal agreement
 disgust, 2.0
 His toenails where massive
 fear, 2.1
 I felt ... going in to hospital
- All readers agree on the emotion, but not with the writer, low appraisal agreement pride, sadness, 1.7
 That I put together a funeral service for my Aunt shame, relief, 1.8
 I tasked with sorting out some files from the office the previous day and I slept off when I got home

Modeling Results

- Classification with RoBERTa-based models.
- Appraisal Classification: 75 F₁
- Emotion classification: 59 F₁
- + Appraisals: +2pp F₁ (+10 for guilt, +6 for sadness)
- ⇒ Appraisals help to build better models.



Examples where Appraisals correct the Emotion Classifier

• When my child settled well into school

trust→relief

• broke an expensive item in a shop accidently

guilt→shame

• my mother made me feel like a child

shame→anger

• I passed my Irish language test

pride→relief

• His toenails where massive

 $\mathsf{pride} {\rightarrow} \mathsf{disgust}$

Conclusion & Summary

- We presented the first self-annotated large-scale appraisal corpus
- Annotators can reliably recover both emotions and appraisals (demographics play a significant but small role)
- Appraisals help emotion categorization for some emotion categories
- More importantly: Appraisals help to understand reasons for disagreement

Outline

- 1 NLP Research Methods
- 2 Emotion Analysis
- 3 Zero-Shot Learning for Emotion Classification
- 4 Appraisal-based Emotion Analysis
- 5 Prompt Search for Text Generation
- 6 Take Home

Conditional Text Generation via Prompt Search

Task

Generate text that expresses a predefined emotion.

Applications

Module of dialogue systems, intelligent agents, or (story-)writing assistants.

State of the art

Guide the decoding of the text generation with emotion specific information.

Novel Method

Automatic prompt optimization of instruction-tuned models.

Method: Automatic Prompt Optimization

- Seed prompt: "Write a text that expresses (emotion)"
- Paraphrase: Replace/add/remove words in seed prompts
- Evaluation: Run generation process, evaluate with pre-trained emotion classifier
- Selection: Keep paraphrased prompts if performance is improved

Example of Input/Output Pairs during Optimization (Flan-T5)

- Write a text that expresses disgust
 - i don't know what to do about it.
- Write a text to expresses disgust
 - i'm disgusted.
- a text that expresses fear
 - a text that expresses fear
- Write in a text to expresses shame
 - i don't know how to express my shame.
- Write a text that to expresses shame
 - i'm sorry to hear that.
- Write in a long enough string to expresses joy
 - a long enough string to express joy.
- Write a long text string to expresses joy
 - i love you so much

Take Home

- NLP Research is driven by task definitions and appropriate modeling
- Natural language inference can be applied for emotion classification without knowing the emotion categories in advance
- Annotation and language model fine-tuning: Appraisal theories as a novel approach to
 emotion analysis in text they support emotion classification and also do not require to
 fully specify the emotion set
- Automatic prompt optimization: Emotion-conditioned text generation very challenging to automatically find well-performing prompts.

Thank you for your attention. Questions? Remarks?

Thanks to

- Ph.D. Students
 - Enrica Troiano
 - Laura Oberländer née Bostan
 - Yarik Menchaca Resendiz
 - Flor Miriam Plaza Del Arco
- Collaborators
 - Kai Sassenberg

Natural Language Processing Tasks and Methods

Challenges for Emotion Analysis and Generation

Roman Klinger roman.klinger@ims.uni-stuttgart.de

©roman_klinger in romanklinger https://www.romanklinger.de/

