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Abstract

Corpora that are the fundament for toxicity de-
tection contain such expressions typically di-
rected against a target individual or group, e.g.,
people of a specific gender or ethnicity. Prior
work has shown that the target identity mention
can constitute a confounding variable. As an ex-
ample, a model might learn that Christians are
always mentioned in the context of hate speech.
This misguided focus can lead to a limited gen-
eralization to newly emerging targets that are
not found in the training data. In this paper, we
hypothesize and subsequently show that this is-
sue can be mitigated by considering targets on
different levels of specificity. We distinguish
levels of (1) the existence of a target, (2) a class
(e.g., that the target is a religious group), or
(3) a specific target group (e.g., Christians or
Muslims). We define a target label hierarchy
based on these three levels and then exploit this
hierarchy in an adversarial correction for the
lowest level (i.e. (3)) while maintaining some
basic target features. This approach does not
lower the toxicity detection performance but
increases the generalization to targets not being
available at training time.

1 Introduction

The EU Code of conduct on countering illegal hate
speech online relies on the definition of hate speech
as “all conduct publicly inciting to violence or ha-
tred directed against a group of persons or a mem-
ber of such a group defined by reference to race,
colour, religion, descent or national or ethnic ori-
gin.”1,2 This definition points out the role of the
target in hate speech, which is one form of toxicity
in text, next to other offensive language (Leite et al.,
2020). Targets as a constituting element already

1This paper contains some examples of toxicity. This is
strictly for the purpose of explaining subtleties of the phe-
nomenon that are important for this research. Please be aware
that this content could be offensive and cause you distress.

2https://ec.europa.eu/newsroom/just/document.
cfm?doc_id=42985

received some attention in previous work (Silva
et al., 2016; Lemmens et al., 2021, i.a.).

Hate speech expressions vary a lot, from ex-
plicit formulations to more implicit, and sometimes
even intentionally cryptic references, to bypass
automatic filters. This is an issue, because data
collection procedures can never be entirely fair –
they suffer from being focused on specific time
frames, topics, and therefore also targets (Dixon
et al., 2018). The working hypothesis in our pa-
per follows Waseem and Hovy (2016), Talat et al.
(2018) and Davidson et al. (2019) who have shown
that models learn regularly occurring target terms
as features of toxicity, because corpora developed
for annotation and training might mention poten-
tial targets predominantly in a toxic context. For
toxicity directed against less frequently mentioned
targets or where identity terms are not explicitely
mentioned (e.g., Examples #8 and #9 in Table 1), a
biased model is more apt to not detect toxicity.

We aim at improving on this situation and pro-
pose to perform adversarial correction of toxicity
classifiers with regard to target identities. This
leads to a challenge: How specific should the target
mention that we correct for be? Correcting for spe-
cific targets might lead to a sparsity problem while
correcting for the occurrence in a binary fashion
might not provide sufficiently specific information

“I hate muslims.”
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Figure 1: Example for toxicity and hierarchical identity
classification. We study if debiasing for the identity
prediction on various levels of specificity (Occurrence
O, Class C and Identity I) improves the robustness of
the toxicity classification.
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to the adversary. Further, the mere occurrence of
a target might provide valuable information to the
toxicity classifier, without confounding it. A nov-
elty in our method is therefore our formulation of
the gradient update to consider various hierarchical
levels of specificity of target identities.

We assume in our experiments access to a cor-
pus annotated on the text/instance level for toxicity
(Tox) and for concrete classes of target groups (a
requirement that is fulfilled by the CivilComments
dataset by Borkan et al., 2019) and infer hierarchi-
cal labels from these annotations: binary (Occur-
rence O; identity mentioned or not), the mention
of specific groups (Class C; e.g., religions, sexual
orientations, ethnicities) or concrete instances of
these groups (Identity I; e.g., atheist, buddhist; het-
erosexual, bisexual; black, asian, white). Figure 1
shows an example of a toxic text with such hierar-
chical annotations. Our desideratum is to correct
for concrete group mentions and particular groups,
such that a toxicity classifier works well also for
texts that mention new identities (for instance, a not
commonly targeted religion).

The contribution of this paper is therefore to
answer the following research questions:

1. Does jointly learning binary target occurrence
detection with toxicity detection improve the
latter? (No.)

2. Does the performance of a toxicity classifier
decrease if the underlying encoder is opti-
mized to not being able to represent specific
target groups or identities while maintaining
target occurrence features? (No.)

3. Does adversarial correction of specific target
identities lead to better generalization? (Yes.)

4. Does such correction lead to a more reason-
able decision by the model? Do debiased mod-
els rely on concepts which are more meaning-
ful for toxicity detection? (Yes.)

2 Related Work

2.1 Toxicity Detection
Most previous work focused on toxicity detection
as binary classification (Nobata et al., 2016; Gol-
beck et al., 2017; Gao and Huang, 2017, i.a.) with
a large set of shared tasks on the topic (Bosco et al.,
2018; Wiegand et al., 2018; Zampieri et al., 2019b;
Basile et al., 2019; Struß et al., 2019; Mandl et al.,
2020, 2021). Schmidt and Wiegand (2017) provide
a general overview of approaches to detection.

Various studies recognized the importance of
fine-grained aspects of hate speech. Struß et al.
(2019) propose a classification of offensive posts
into subcategories of explicit and implicit aversions.
Davidson et al. (2017) separate hate speech from
instances of untargeted offensive language. They
highlight that cases where explicit features are ab-
sent are hard to distinguish. Sachdeva et al. (2022)
investigate mentions of identity groups as targets
of hate speech. They find that the target detection
performance suffers for cases of rarely represented
identity groups. Plaza-del-Arco et al. (2021) train
a model jointly for hate speech and targets.

There is a set of corpora annotated for concepts
from the realm of toxicity and targets. Davidson
et al. (2019) provide data annotated for hate speech
and rely on Waseem and Hovy (2016) for the sub-
categories of sexism and racism. The Gab Hate
corpus by Kennedy et al. (2022) considers hate
speech and target identity groups, however does
not contain fine-grained identity term labels.

In our experiments, we use the CivilComments
dataset by Borkan et al. (2019). This dataset is
annotated for toxicity and 24 categories of identity
terms, which can be used to measure unintended
biases. Koh et al. (2021) use a subset of these data
to investigate shifts regarding different distributions
of categories such as identity terms. They show that
standard training yields substantially lower out-of-
distribution than in-distribution performance. This
motivates the use of debiasing as a possible method
to improve out-of-distribution performance.

2.2 Debiasing Approaches
Debiasing methods that either modify the training
data or the training process have been applied to
hate speech detection. Talat et al. (2018) high-
light the issue of social biases in datasets when
they are used to train detection systems which is
taken up with a classifier-centric consideration by
Davidson et al. (2019). Sap et al. (2019) show that
annotation bias further aggravates the issue. Such
biases were also found in abusive language data
(Dixon et al., 2018; Wiegand et al., 2019). Biases
in the data carry over to a trained model (Dixon
et al., 2018). Social stereotypes against marginal-
ized groups have been shown to be echoed in hate
speech classifiers (Thylstrup and Talat, 2020; Da-
vani et al., 2023; Gehman et al., 2020; Sap et al.,
2020). To facilitate the testing of models, Röttger
et al. (2021) developed the HateCheck corpus cov-
ering a range of identity terms.



Bias mitigation techniques may be applied to
alter the training data directly, by masking poten-
tially confounding tokens. These tokens have been
recognized based on attention mechanisms, entity
detection, and keyword recognition (Wiegand et al.,
2018; Dayanik and Padó, 2020; Kumar et al., 2019).
Ramponi and Tonelli (2022) detect tokens to be
masked via pointwise mutual information (PMI).
Furthermore, Badjatiya et al. (2019) suggest to
identify tokens to be masked based on their part-
of-speech. Xue et al. (2023) propose a different
approach than masking, namely balancing the spu-
rious attributes across all classes.

Rather than changing the input, the training pro-
cess can also be manipulated directly. Vaidya et al.
(2020) suggest a classification model for toxicity
detection that jointly detects identity terms. This
is in contrast to our work, which aims at correct-
ing for the target mentions’ influence instead of
exploiting it. The authors show that their approach
improves classification performance for comments
related to some identities, however, they do not
evaluate the generalization capability of the result-
ing model. Further, Kennedy et al. (2020) use a
regularization technique that learns to contextualize
mentions of identity terms and is thus less reliant
on high-frequency words in unbalanced data.

In the last years adversarial correction for debias-
ing received some attention. It is used to “unlearn”
properties of confounding concepts in the encoder
of the model (Ganin et al., 2016). This approach of
gradient reversal has been tested with several appli-
cations, including satire detection (correction for
publication source, McHardy et al., 2019), gender
identification (correcting for text topic, Dayanik
and Padó, 2021) and also hate speech (language
variety detection, Xia et al., 2020).

3 Methods

Overview. In order to avoid co-learning identity
term bias in dataset-based learning of hate speech
detection, our approach is to exploit the hierarchi-
cal properties of identities. The basic structure of
the network used in our experiments is displayed in
Figure 2. It consists of a shared encoder and four
classifiers (grey boxes) which are all aggregated in
parallel. The main classifier is the toxicity detector.
The hierarchical dependencies of the three identity
term detectors arise from the labels. On the highest
level we consider identities as a binary label (Oc-
currence: O) which is positive if there is at least one
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Figure 2: Model architecture for hierarchical adversarial
correction of toxicity detection with identity detection.
Continuous lines: forward pass, dashed lines: backward
pass. Parameters λi with i ∈ {1, 2, 3} weight the iden-
tity detection gradients in the parameter update of the
encoder, thus, configure adversarial correction (λi > 0)
or joint multi-task learning (λi < 0).

identity annotated for a message. The intermediate
level classifier (Class: C) categorizes identities into
five groups. Each of the five categories corresponds
to a binary label which is positive if at least one
identity from the respective category is annotated.
The most fine-grained classifier considers 24 differ-
ent identity labels on the lowest level (Identity: I)
with binary values for each of those. Each value
is positive if the respective identity is annotated
for the message. Each of the mentioned classifiers
consists of a single linear layer with the number of
neurons corresponding to the respective number of
classes. The identity classifiers for Class and Iden-
tity are both multi-label classifiers, as several of
their classes can occur together in a message. With
this model we can exploit the hierarchical structure
of the unwanted confounding variable in parallel
(potentially partially adversarial) classifiers.3

Adversarial Correction. Following Ganin et al.
(2016), the gradient updates for the adversary are
reversed and weighted for a correction of the en-
coder, while the parameters of the classifiers are up-
dated without modification. However, we allow for
multiple adversaries and apply an individual weight
for each level in the identity hierarchy, namely λ1

for the binary occurrence detection, λ2 for the class
of the identity term, and λ3 for the identity term on
the lowest level. Hence, our parameter update for
the parameters in the encoder θe is

θe := θe−η
(∂JTox

∂θe
−λ1

∂JO

∂θe
−λ2

∂JC

∂θe
−λ3

∂JI

∂θe

)
,

3We use BERT (Devlin et al., 2019) as the intitialization
of our encoder (concretely bert-base-uncased) and apply a
dropout (probability 0.2).



Hierarchical Identity Term Labels

# Text Tox O C I

1 This woman is as fake as her perpetual tan. + + gender female
2 boy. this guy is incredibly stupid. + + gender male
3 Transgender is not real... It is however a mental disorder!!! + + gender, disability transgender, illness
4 Never hire a Muslim, a Black person or a female...ever! + + religion, ethnicity, gender muslim, black, female
5 The man is a bag of dirt. An absolute scumbag. + + gender male
6 Old white men ARE the swamp. + + ethnicity, gender white, male
7 It was a human male not a female fat sac. + + gender male, female
8 That is the standard speech from idiots and snowflakes. + − — —
9 What a piece of human garbage. + − — —

10 Muslims are being attacked daily. − + religion muslim
11 ISIS has killed far more Muslims than Christians. − + religion muslim, christian

Table 1: Examples of annotated text instances from the CivilComments dataset (Borkan et al., 2019). Illness:
physical or mental illness. Binary labels (+ and −) are annotated for the existence of the toxicity label (Tox) or the
occurrence of an identity term (O). The Class (C) and Identity (I) are multi-label variables.

where η is the learning rate. JTox is the loss func-
tion for the toxicity classifier and JO, JC, and JI
are the binary cross entropy loss functions (includ-
ing a sigmoid function) for each layer in the iden-
tity hierarchy, respectively. Hence, λi > 0 cor-
responds to adversarial learning and λi < 0 to
joint learning of the encoder. The parameter up-
dates for the classifiers (grey boxes in Figure 2)
are θTox := θTox − η ∂JTox

∂θTox
for the Toxicity cate-

gorization, θO := θO − η ∂JO
∂θO

for the Occurrence
categorization, θC := θC − η ∂JC

∂θC
for the Class cat-

egorization, and θI := θI − η ∂JI
∂θI

for the Identity
detection. The optimizer minimizes the overall loss
J = JTox + JO + JC + JI.

4 Experimental Setting

In the following, we explain the data that we use
(§4.1) and the experimental setting (§4.2).4

4.1 Data
We use the CivilComments dataset (Borkan et al.,
2019), the largest corpus in English annotated for
both toxicity and identity terms with approximately
450,000 instances. We infer the hierarchical anno-
tations from the 24 identity labels (see Table 1).

In these data, instances consist of individual
posts as short text messages (the average instance
length in the development data is 78 tokens) with
all annotations on instance level. We transform
the fractions of annotators that agree on a label to
binary values by majority vote (following Xiang

4Our code to replicate the experiments can be accessed via
https://www.uni-bamberg.de/en/nlproc/resources/
hierarchical-detox/

et al., 2021; Faal et al., 2021; Baldini et al., 2022;
Lobo et al., 2022). From the 24 fine-grained anno-
tated classes (I), we infer five more coarse-grained
categories (C):

1. Gender: male, female, transgender, other gender

2. Sexual orientation: heterosexual, homosexual gay

or lesbian, bisexual, other sexual orientation

3. Religion: christian, jewish, muslim, hindu, buddhist,

atheist, other religion

4. Race or ethnicity: black, white, asian, latino, other

race or ethnicity

5. Disability: physical disability, intellectual or learning

disability, psychiatric or mental illness, other disability

This leads to a hierarchical multi-label annotation
for identities. Our goal is to mitigate the bias to-
wards frequently mentioned identity terms during
training in order to improve generalization for other
cases: namely, to correctly detect toxicity in cases
where no explicit target identity is mentioned (e.g.,
as in Examples #8 and #9), and to not detect toxic-
ity based solely on the presence of specific target
mentions (e.g., as in Examples #10 and #11). In
this dataset, toxic instances contain identity terms
in 61% of cases, but only 40% of non-toxic in-
stances do (see Appendix B for more details).

For the Jigsaw Unintended Bias in Toxicity Clas-
sification challenge on Kaggle5 this dataset was
split into a development set with 405,130 instances
and two test sets with a total of 42,870 instances.
For our experiments we randomly split this develop-
ment set into training (100k instances), validation

5https://www.kaggle.com/c/jigsaw-unintended-b
ias-in-toxicity-classification

https://www.uni-bamberg.de/en/nlproc/resources/hierarchical-detox/
https://www.uni-bamberg.de/en/nlproc/resources/hierarchical-detox/
https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification
https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification


for early stopping during training (50k) and hyper-
parameter optimization (≈255k). Further details
are given in Appendix A. For evaluation, we use
the official test sets combined (≈43k instances).

4.2 Model Configurations
We train different model configurations in order
to answer our research questions (cf. Section 1).
The main goal of these experiments is to assess
whether the performance of a toxicity classifier de-
creases if the underlying encoder is optimized to
not being able to represent specific target groups
or identities while maintaining target occurrence
features. Therefore, we configure a baseline model
to compare its toxicity detection performance with
debiased models. Additionally, we evaluate the
performance of the different models in recognizing
identity terms. This serves to identify whether, and
to what extent, the different toxicity detection mod-
els pay attention to target identities. We explore
different combinations of joint multi-task learning
with target occurrence and adversarial correction of
specific target identities to determine which effect
the different levels of the identity term hierarchy
x ∈ (1, 2, 3) have on the toxicity classifier.

Baseline. We train a model purely for toxic-
ity detection. In this TOX setup, the Occur-
rence/Class/Identity classifiers are also trained, but
the encoder is not optimized via backpropagation
with this information (λ1 = λ2 = λ3 = 0). Here
the encoder is only trained by the toxicity detec-
tor. This setup serves the purpose of investigat-
ing whether the uncontrolled and unguided toxicity
classifier relies on features which contain informa-
tion regarding identity term mentions.

Debiased Baseline. In order to compare our cor-
rection method to an established bias mitigation
method, we adopt the debiasing approach by Ram-
poni and Tonelli (2022). We refer to this model
as RT (2022). It cannot rely on features of iden-
tity terms as it automatically masks the tokens
most strongly associated with each identity term
label. Following Ramponi and Tonelli (2022) we
use normalized PMI scores to automatically ex-
tract such spurious artifacts. While Ramponi and
Tonelli (2022) manually annotate the top 200 en-
tries, we automate this process by filtering all to-
kens with normalized PMI values > .6. This cut-
off value was chosen based on the identity term
Muslim where we find the tokens muslim, mus-
lims, islam and islamic with values > .80 but

also mosque (.65), quran (.63) and mosques (.62)
amongst other tokens which are not as obviously
connected: world (.71), religious (.71) or europe
(.70). This approach filters a total of 751 word
types for all identities. Besides operating on par-
tially masked text, this baseline follows the config-
uration of the TOX setup mentioned above.

MTL (multi-task learning). Our data analysis
has shown (see Section 4.1) that there is a correla-
tion between toxicity and identity terms. We now
want to test whether this carries over to the model
level (cf. RQ1 in Section 1). Thus, we use MTL
to guide the encoder to explicitly learn features
for both toxicity detection and target occurrence
in a joint setup (Model Tox+O,C,I with λ1 = −1,
λ2 = λ3 = 0). To create an upper bound for the
identity term detection performance on all three lev-
els we train a model where all classifiers are com-
bined jointly (Model Tox+O+C+I, λx = −1).

Adversarial. In order to assess the importance
of target occurrence features for the detection
of toxicity, we train a model for comparison in
which we instruct the encoder to unlearn pre-
cisely these features. In this model identity oc-
currence is used as an adversary (Model Tox−O,
λ1 ∈ {0.10, 0.25, 0.50, 1.00}). Additionally, as a
starting point to debias the model for identities,
we train a model where we use an adversary on
the lowest level of the identity hierarchy (Model
Tox−I, λ3 ∈ {0.10, 0.25, 0.50, 1.00}).

MTL&Adversarial. Based on the intuition that
we want to guide the toxicity detector with features
from mentioned targets while debiasing for iden-
tities, we combine parameterizations for multiple
levels of the hierarchy. In addition to the joint toxi-
city and target occurrence classifier (λ1 = −1), we
now debias the model for specific identity terms
to understand whether this has a negative effect
on the performance (cf. RQ2 in Section 1). We
include an adversary via a gradient reversal layer
on the lowest level of the identity term detection
(λ3 ∈ {0.10, 0.25, 0.50, 1.00}) and, thus, deprive
the model of the ability to distinguish between
different identity terms (e.g., which specific reli-
gion is mentioned). This serves to unlearn iden-
tity term features in the encoder and to determine
whether this increases the generalization ability
of the model. In order to evaluate the role of
the intermediate level, we include the classifier
for the identity class jointly (λ1 = −1, resulting



Model λ1 λ2 λ3 F1(1)Tox F1(1)O F1(5)C F1(24)I

TOX (baseline) 0 0 0 .64 .59 .25 .07

RT (2022) 0 0 0 .55 .45 .13 .03

Tox+O,C,I −1 0 0 .63 .93 .34 .10
Tox−O 1.00 — — .63 .05
Tox−I — — 0.10 .63 (.58) (.20) .05
Tox+O+C+I −1 −1 −1 .64 .93 .86 .38
Tox+O+C−I −1 −1 0.50 .63 .93 .86 .24
Tox+O−C−I −1 0.25 0.25 .64 .93 .30 .08

Table 2: Performance of optimized models on the test dataset. We display F1 for the positive classes across all
variables. The values in the superscript of the F1 scores specify the number of classes evaluated in each task – for
multi-label tasks (Class and Identity) we display the macro-average F1 over all positive class label F1 scores. In the
column “Model”, “+” marks joint classification, “−” marks adversaries and classifiers appended with “,” do not
have an effect on the encoder. Tox refers to the toxicity classifier. (O)ccurrence, (C)lass and (I)dentity refer to the
classifiers for the three levels of the identity term label hierarchy according to our model (see Figure 2). Values in
parentheses are inferred from the prediction of more fine-grained labels.

in Model Tox+O+C−I) or as another adversary
(λ1 ∈ {0.10, 0.25, 0.50, 1.00}, resulting in Model
Tox+O−C−I). We hypothesize that correcting for
both class and identity might lead to a more com-
prehensive mitigation of the identity term bias than
the experimental design with only one adversary.

5 Results

We will now discuss the results obtained with the
setting described in the previous sections. Table 2
depicts the results for the best-performing models
based on the parameter λ. Further results can be
found in Appendix C. Table 2 shows F1 values
for different combinations of toxicity detection and
identity detection on the three levels of our hierar-
chy. On top, we see the baseline that only optimizes
the encoder with the toxicity information followed
by the debiased baseline RT (2022).

We observe that RT (2022) shows a lower per-
formance at identity classification than the baseline
TOX (e.g., F1C drops from .25 to .13). There-
fore, the toxicity classifier in RT (2022) learns less
identity-specific features, i.e., the model is success-
ful in reducing bias. Conversely, this also means
that the baseline TOX model automatically learns
identity features without being guided to do so, i.e.,
it in fact contains a bias. However, the results also
show that debiasing following RT (2022) does lead
to a drop in toxicity detection performance (F1Tox

drops from .64 to .55).

RQ1: Does jointly learning binary target oc-
currence detection with toxicity detection im-

prove the latter? To measure if target mentions
are important for toxicity detection, we now fo-
cus on specific models. We compare the perfor-
mance of the baseline model (TOX) to the model
which is also informed with the identity occurrence
classifier (Model Tox+O,C,I) and to the model
which uses a identity occurrence adversary (Model
Tox−O). The results show (cf. Table 2) the F1Tox
scores for all of these models on the same level.
Therefore, while targets are a constituent variable
of the concept of hate speech, we cannot infer from
this evaluation that they are also an essential fea-
ture for toxicity detection. The toxicity classifier
manages to maintain its performance level, even if
we instruct the encoder to learn identity-occurrence
features or, conversely, to unlearn exactly those fea-
tures by adversarial correction. However, in further
evaluations (cf. RQ3 below), we will see that un-
learning identity occurrence features does not have
a positive effect on the generalization ability of the
model, which could be due to the fact that they are
important for learning toxicity detection after all.

RQ2: Does the performance of a toxicity classi-
fier decrease if the underlying encoder is opti-
mized to not being able to represent specific tar-
get groups or identities while maintaining target
occurrence features? We first evaluate overall
toxicity detection performance and then address the
details of identity detection performance to identify
specific differences between models. We obtain the
results by comparing the performance of the mod-
els corrected for identities (adversaries are marked



by −) to the baseline model (TOX). Overall the
F1 score for toxicity detection (see column F1Tox
in Table 2) is fairly constant in the range of .63
to .64. This shows that the toxicity detection does
not suffer from the adversarial correction for iden-
tities. In contrast, the differently debiased model
RT (2022) (which also has been debiased, how-
ever, by masking identity-specific tokens) shows a
substantial performance drop (F1Tox .55). The test
dataset used for this entire evaluation was sampled
from the same source as the training dataset and
is therefore also biased towards the same identi-
ties. Therefore, we presume that this evaluation
is unable to demonstrate a positive effect of debi-
asing on toxicity detection performance. Further
evaluations below under RQ3 and RQ4 show the
performance gain for toxicity detection.

We now want to understand how the capability
of the encoder to represent identity terms changes
at different levels of the hierarchy. We see this
from the performance scores in Table 2: columns
F1O, F1C and F1I (for Occurrence, Class, and
Identity). As expected, the identity classifiers on
each of the three levels in the MTL model (Model
Tox+O+C+I) outperform the models where the
particular level is used as an adversary. When
we use an adversary for identity detection (Model
Tox−I) the performance at identity detection drops
(from .07 for Model TOX to .05), i.e., the model
loses some of its ability to represent identities.
In settings where we emphasize learning of iden-
tity occurrence features (models with +O), the en-
coder also represents more identity features over-
all, e.g. F1I rises from .07 for Model TOX to
.10 for Model Tox+O,C,I. In a model that addi-
tionally learns identity occurrence jointly, we still
see the effect of the adversary on F1I. It drops
from .10 for Model Tox+O,C,I to .08 for Model
Tox+O−C−I. Analogously, this can also be ob-
served for the models which additionally use the
identity class classifier in a joint MTL setting (F1I
drops from .38 for Model Tox+O+C+I to .24 for
Model Tox+O+C−I). Thus, we conclude that ad-
versarial correction has the desired effect of de-
priving the models of the ability to perform the
task of identity term identification on the lowest
level while maintaining target occurrence features.
In addition, the procedure does not harm toxicity
detection.

Finally, we investigate the role of the inter-
mediate level in this setting. Comparing Model
Tox+O+C−I to Model Tox+O−C−I shows that

Training data: Full NR

Test data: Full Full NR R

Model F1(1)
Tox F1(1)

Tox F1(1)
Tox F1(1)

Tox

TOX (baseline) .64 .63 .65 .57

RT (2022) .55
∆−.09

.56
∆−.07

.57
∆−.08

.53
∆−.04

Tox−O .63
∆−.01

.58
∆−.05

.58
∆−.07

.57
∆.00

Tox−I .63
∆−.01

.63
∆.00

.64
∆−.01

.59
∆+.02

Tox+O+C−I .63
∆−.01

.61
∆−.02

.62
∆−.03

.58
∆+.01

Tox+O−C−I .64
∆.00

.62
∆−.01

.63
∆−.02

.58
∆+.01

Table 3: Performance on test data of best models trained
on different training data fractions. NR = non-religion
(filtered), R = only religion (filtered).

using the intermediate level as additional adversary
also has an effect on the lowest level as F1I drops
from .24 to .08. Thus, we conclude that this further
reinforces unlearning features for the lowest level
and leads to a more comprehensive correction.

RQ3: Does adversarial correction of specific tar-
get identities lead to better generalization? We
have now seen that the model debiased for identi-
ties on the lowest level of the hierarchy does per-
form as well at toxicity detection as the one that
is not corrected. The performance scores for the
identity term detection suggest that the encoder
can no longer represent the identities to the same
extent. This should enable an improved general-
ization across domains. We analyze this in two
settings, firstly with an evaluation on target identity
terms which have not been considered during train-
ing, and secondly with other datasets that have not
been used during model development and training.

Regarding the first setup, we train the baseline
and corrected models for the best configurations
on data which has been filtered for all identities
belonging to the religion class.6 Table 3 shows the
evaluation of these models for toxicity detection
on different fractions of the test set. In the first
column we repeat the results of the models from
the first experiment, which were trained on the full
dataset. The last three columns show the models
which were trained on non-religion data (training
data: NR). Here we see that all corrected models
show a drop in performance on in-domain test data

6We chose the religion class since it comprises the largest
number of identities (7 out of the 24) and accounts for a
substantial number of instances (7,514) in the test data. For
the model RT (2022) we repeat the process of identifying the
tokens that are masked on the basis of the filtered dataset.



compared to the baseline (second to last column,
test data: NR). However, our corrected models
show an improved performance on out-of-domain
test data (last column, test data: R) in comparison
to the baseline. Only the model corrected for Oc-
currence (Tox−O) does not show an improvement.
This confirms our intuition that the correction for
general target terms is not the best choice since it
also includes features which are beneficial for toxic-
ity detection. We conclude that our correction does
lead to a better toxicity prediction generalization.

The second generalization evaluation is per-
formed with out-of-distribution performance evalu-
ations. We show the datasets that we use and the de-
tailed results for the out-of-distribution hate speech
and toxicity detection performance in Appendix D.
We observe that all models show on average a sim-
ilar performance on out-of-distribution data (RT
(2022) being an exception). Thus, we conclude
that all corrected models show similar cross-corpus
performance compared to the baseline models. We
assume that the corpora used represent different
domains and only share the targets of hate speech,
our identity terms, to a limited extent.

RQ4: Does such correction lead to a more rea-
sonable decision by the model? Do debiased
models rely on concepts which are more mean-
ingful for toxicity detection? To understand if
the corrected model relies more on concepts that
do not correspond to identities – potential targets
of offensive language –, we analyze the change in
toxicity detection performance for specific target
terms. We subdivide the test dataset into subsets
mentioning specific identities and evaluate the toxi-
city detection performance of the different models.
The detailed evaluation is given in Appendix E.
We observe that the performance of the corrected
models for detecting toxicity mentioning the most
frequent target terms is comparable to the baseline.
However, for subsets with less frequent identities,
adversarial correction improves toxicity detection
in two-thirds of all cases. Thus, we conclude that
the corrected models rely less on identities as fea-
tures and learn other, more meaningful concepts.

We further visualize this effect on selected exam-
ples using LIME (Ribeiro et al., 2016) to calculate
local explanations on the words of an instance that
are most important. Figure 3 displays such expla-
nations for five selected examples from the test
dataset where the debiased model Tox+O−C−I
corrects errors of the baseline model. Examples

Example 1 (Tox −):

T
O

X
(T

ox
+

)

And I bet Donnie has a black friend, too.

C
or

r.
(T

ox
−

)

And I bet Donnie has a black friend, too.

Example 2 (Tox −):

T
O

X
(T

ox
+

)

Every Texan and Republican should be blessed with a 
gay son or daughter, or with a transgender child. We
can only hope they would love them equally.

C
or

r.
(T

ox
−

)

Every Texan and Republican should be blessed with a
gay son or daughter, or with a transgender child. We
can only hope they would love them equally.

Example 3 (Tox −):

T
O

X
(T

ox
+

)

LOL cmon! you know news only reports when its a
"white male"

C
or

r.
(T

ox
−

)

LOL cmon! you know news only reports when its a
"white male"

Example 4 (Tox +):
T

O
X

(T
ox

+
)

Not Islamic terrorists, rather, devout Moslems.

C
or

r.
(T

ox
+

)

Not Islamic terrorists, rather, devout Moslems.

Example 5 (Tox +):

T
O

X
(T

ox
+

)

Somebody needs to do something about these crazy
white folk.

C
or

r.
(T

ox
+

)

Somebody needs to do something about these crazy
white folk.

Figure 3: Explanations for the predictions of the base-
line model TOX and our corrected model Tox+O−C−I
(Corr.) according to LIME on instances from the Civil-
Comments test dataset. The gold and predicted labels
are shown in parentheses. Blue indicates word impor-
tance for Tox +, orange refers to Tox −. The intensity
correlates to LIME’s importance weights.

1 to 3 are all non-toxic instances which contain
identity terms. The biased baseline TOX focuses
only on these terms (e.g. “black”, “gay”, “transgen-
der”, “white” and “male”) and incorrectly predicts
toxicity. The debiased model corrects the error
and correctly predicts the instances as non-toxic. It
achieves this by also taking into consideration other
tokens (most of them are marked with an orange
background color) in which it finds no decisive
features of toxicity. Examples 4 and 5 in Figure 3
show toxic instances with target mentions. Here
both models manage to classify the instances as
toxic. However, the biased baseline TOX bases its



Example 1 (Tox +):
T

O
X

(T
ox

−
)

Germans have been killing infidels since 624AD and
they will not stop

C
or

r.
(T

ox
+

)

Germans have been killing infidels since 624AD and
they will not stop

Example 2 (Tox +):

T
O

X
(T

ox
+

)

Some researchers are the worst!

C
or

r.
(T

ox
+

)

Some researchers are the worst!

Figure 4: LIME explanations for the predictions on
the CivilComments test data of the baseline TOX and
the corrected model Tox+O−C−I (Corr.). In these
examples, we manually manipulated the sentences by
inserting new, originally non-existent targets.

decision mostly on the presence of identity terms
(e.g. “Islamic”, “Moslems” and “white”). In con-
trast, the debiased model does not rely as much on
the mentioned identity terms which leads to a more
reasonable decision with higher weights on words
such as “terrorists” and “crazy”.

We additionally investigate instances of toxic-
ity with targets which are not included in the set
annotated on the training data (such as “Germans”
and “researchers”). We display LIME explanations
in Figure 4 for predictions of examples from the
test data which we modified to include such new
target terms. These examples visualize cases of
the improved generalization capability of the cor-
rected model. Example 1 is incorrectly predicted as
non-toxic by the biased baseline TOX model. The
debiased model corrects the error as it is able to
rely more on the new target. For Example 2, both
models correctly predict the toxicity, however, the
corrected model again assigns a higher weight on
the new target. While this is a small-scale analysis
based on a few examples, it suggests that there are
cases where the corrected models use more mean-
ingful features for toxicity detection.

6 Conclusion

We have shown that hierarchical adversarial correc-
tion for target identities leads to a toxicity classifier
with an improved robustness. The corrected models
show the same performance at toxicity detection as
the biased baseline model. We presented a method
to apply adversarial correction for the lowest level
of hierarchical information regarding identity term

mentions. Our results have demonstrated that it is
possible to simultaneously maintain basic target oc-
currence features. However, target occurrence has
not been shown to be as important for the detection
of toxicity as the related concept of hate speech
would suggest. This motivates future work to di-
vise toxicity into more fine-grained concepts such
as hate speech, offensive language and profanity, in
the delineation of which target occurrence features
presumably play a more decisive role.

Furthermore, when debiasing for individual iden-
tity terms, our experiments with the different hi-
erarchical levels of specificity of the confounding
variable have shown that it is more beneficial to
additionally correct for classes of identities. It fol-
lows that a coarser grouping of identity categories
must also be considered when defining the label set
for annotation in order to achieve a more compre-
hensive correction during training.

Overall, our correction has shown to lead to a
more reasonable decision by the model as it does
not exclusively rely on identity features for toxi-
city detection and shows better generalization ca-
pabilities. This affects real-world applications of
such models in that these models are required to
be demonstrably debiased and treat individual iden-
tities fairly. Additionally, this motivates that a
full evaluation of model performance must test the
generalization ability of such models on further
datasets where different identities are mentioned,
as in-distribution biases do not show up in standard
evaluations with a single test dataset.

Our research opens a set of important follow-up
questions. In particular, whether further fine-tuning
of the training process can lead to an improved over-
all toxicity detection with adversarial correction.
This might be achieved, e.g., by testing different
individual learning rates for optimizing the classi-
fiers, the adversary and the encoder separately or
by using multiple adversaries for latent variables
as presented by Kumar et al. (2019). Also, since
target detection might play a more significant role
to distinguish hate speech from offensive language,
an evaluation of our correction approach on such
data would be an important next step to fight online
toxicity.
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Limitations

We only ran all model configurations once due to
limited time. The implementation contains random-
ized steps (initialization of weights, shuffling of
training instances). Thus, the reported performance
scores might not be entirely robust. However, our
reported conclusions are based on substantial dif-
ferences in performance of the different models.

Our implementation of the debiased baseline
methods by Ramponi and Tonelli (2022) does only
partially follow their suggested approach. While
we do not consider manual annotation of top-n lists
and use a fix threshold PMI value, choosing a top-n
cut-off might be a more justified choice. Further-
more, Ramponi and Tonelli (2022) suggest multi-
ple different approaches to deal with the identified
spurious artifacts while we only use the removal
method for comparison as a baseline.

In the experiment with filtering training data for
specific identity classes, we focused on the evalua-
tion of a setting where we filtered the religious
identities. We chose the religion class since it
comprises the largest number of identities (7 of
the 24) and accounts for a substantial number of
instances in the test data (7,514) which we can
evaluate separately. For full expressiveness of the
results, experiments where identities from other
classes are filtered, should also be conducted. How-
ever, we presume that statistical evidence for the
performance of less frequent classes (e.g. there
are only 544 test instances for the disability class)
might be limited.

Ethical Considerations

Potential risks. We mention examples of toxi-
city and hate speech which might offend readers
of this paper. They are taken from empirically col-
lected datasets and do not portray our own opinions.
However, we believe that it is inevitable to investi-
gate concrete instances when discussing detection
approaches.

Reproducibility. We use datasets with annota-
tions for toxicity and hate speech. All of these
datasets are freely available for research use. We
use these data for their intended use, to develop
detection systems. Since we research toxicity and
mentions of identity terms, the datasets have not
been filtered or anonymized for such attributes.

We publish our program code for maximum
transparency. The described models and predic-

tions of labels can be reproduced with this code.
For training we randomly split the dataset into spe-
cific portions. As these are quite large, we believe
that they are representative for the entire corpus
and that the same experiments with different par-
titions lead to the same conclusions. Additionally,
we provide a script to reproduce the random split
used in our experiments to benefit future research.

We report relevant information for the used ar-
tifacts and refer to the original publications for
further documentation. We describe the structure
and size of the models we create. We believe that
these descriptions make our approach reproducible.

References
Pinkesh Badjatiya, Manish Gupta, and Vasudeva Varma.

2019. Stereotypical bias removal for hate speech de-
tection task using knowledge-based generalizations.
In The World Wide Web Conference, WWW ’19, page
49–59, New York, NY, USA. Association for Com-
puting Machinery.

Ioana Baldini, Dennis Wei, Karthikeyan Natesan Ra-
mamurthy, Moninder Singh, and Mikhail Yurochkin.
2022. Your fairness may vary: Pretrained language
model fairness in toxic text classification. In Find-
ings of the Association for Computational Linguis-
tics: ACL 2022, pages 2245–2262, Dublin, Ireland.
Association for Computational Linguistics.

Valerio Basile, Cristina Bosco, Elisabetta Fersini, Nozza
Debora, Viviana Patti, Francisco Manuel Rangel
Pardo, Paolo Rosso, and Manuela Sanguinetti. 2019.
SemEval-2019 Task 5: Multilingual Detection of
Hate Speech Against Immigrants and Women in Twit-
ter. In 13th International Workshop on Semantic
Evaluation, pages 54–63. Association for Computa-
tional Linguistics.

Daniel Borkan, Lucas Dixon, Jeffrey Sorensen, Nithum
Thain, and Lucy Vasserman. 2019. Nuanced metrics
for measuring unintended bias with real data for text
classification. In Companion proceedings of the 2019
world wide web conference, pages 491–500.

Cristina Bosco, Dell’Orletta Felice, Fabio Poletto,
Manuela Sanguinetti, and Tesconi Maurizio. 2018.
Overview of the EVALITA 2018 Hate Speech Detec-
tion Task. In EVALITA 2018-Sixth Evaluation Cam-
paign of Natural Language Processing and Speech
Tools for Italian, volume 2263, pages 1–9. CEUR.

Aida Mostafazadeh Davani, Mohammad Atari, Bren-
dan Kennedy, and Morteza Dehghani. 2023. Hate
speech classifiers learn normative social stereotypes.
Transactions of the Association for Computational
Linguistics, 11:300–319.

Thomas Davidson, Debasmita Bhattacharya, and Ing-
mar Weber. 2019. Racial bias in hate speech and

https://doi.org/10.1145/3308558.3313504
https://doi.org/10.1145/3308558.3313504
https://doi.org/10.18653/v1/2022.findings-acl.176
https://doi.org/10.18653/v1/2022.findings-acl.176
https://doi.org/10.18653/v1/S19-2007
https://doi.org/10.18653/v1/S19-2007
https://doi.org/10.18653/v1/S19-2007
https://doi.org/10.1145/3308560.3317593
https://doi.org/10.1145/3308560.3317593
https://doi.org/10.1145/3308560.3317593
http://ceur-ws.org/Vol-2263/paper010.pdf
http://ceur-ws.org/Vol-2263/paper010.pdf
https://doi.org/10.1162/tacl_a_00550
https://doi.org/10.1162/tacl_a_00550
https://doi.org/10.18653/v1/W19-3504


abusive language detection datasets. In Proceedings
of the Third Workshop on Abusive Language Online,
pages 25–35, Florence, Italy. Association for Com-
putational Linguistics.

Thomas Davidson, Dana Warmsley, Michael Macy, and
Ingmar Weber. 2017. Automated hate speech de-
tection and the problem of offensive language. In
Proceedings of the 11th International AAAI Confer-
ence on Web and Social Media, ICWSM ’17, pages
512–515.

Erenay Dayanik and Sebastian Padó. 2020. Masking
actor information leads to fairer political claims de-
tection. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
4385–4391, Online. Association for Computational
Linguistics.

Erenay Dayanik and Sebastian Padó. 2021. Disentan-
gling document topic and author gender in multiple
languages: Lessons for adversarial debiasing. In Pro-
ceedings of the Eleventh Workshop on Computational
Approaches to Subjectivity, Sentiment and Social Me-
dia Analysis, pages 50–61, Online. Association for
Computational Linguistics.

Ona de Gibert, Naiara Perez, Aitor García-Pablos, and
Montse Cuadros. 2018. Hate speech dataset from
a white supremacy forum. In Proceedings of the
2nd Workshop on Abusive Language Online (ALW2),
pages 11–20, Brussels, Belgium. Association for
Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Lucas Dixon, John Li, Jeffrey Sorensen, Nithum Thain,
and Lucy Vasserman. 2018. Measuring and mitigat-
ing unintended bias in text classification. In Proceed-
ings of the 2018 AAAI/ACM Conference on AI, Ethics,
and Society, pages 67–73.

Farshid Faal, Jia Yuan Yu, and Ketra A Schmitt. 2021.
Domain adaptation multi-task deep neural network
for mitigating unintended bias in toxic language de-
tection. In Proceedings of the 13th International
Conference on Agents and Artificial Intelligence
(ICAART 2021), volume 2, pages 932–940.

Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pas-
cal Germain, Hugo Larochelle, François Laviolette,
Mario March, and Victor Lempitsky. 2016. Domain-
adversarial training of neural networks. Journal of
Machine Learning Research, 17(59):1–35.

Lei Gao and Ruihong Huang. 2017. Detecting on-
line hate speech using context aware models. In
Proceedings of the International Conference Recent

Advances in Natural Language Processing, RANLP
2017, pages 260–266, Varna, Bulgaria. INCOMA
Ltd.

Samuel Gehman, Suchin Gururangan, Maarten Sap,
Yejin Choi, and Noah A. Smith. 2020. RealToxi-
cityPrompts: Evaluating neural toxic degeneration
in language models. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
3356–3369, Online. Association for Computational
Linguistics.

Jennifer Golbeck, Zahra Ashktorab, Rashad O. Banjo,
Alexandra Berlinger, Siddharth Bhagwan, Cody Bun-
tain, Paul Cheakalos, Alicia A. Geller, Quint Ger-
gory, Rajesh Kumar Gnanasekaran, Raja Rajan Gu-
nasekaran, Kelly M. Hoffman, Jenny Hottle, Vichita
Jienjitlert, Shivika Khare, Ryan Lau, Marianna J.
Martindale, Shalmali Naik, Heather L. Nixon, Piyush
Ramachandran, Kristine M. Rogers, Lisa Rogers,
Meghna Sardana Sarin, Gaurav Shahane, Jayanee
Thanki, Priyanka Vengataraman, Zijian Wan, and
Derek Michael Wu. 2017. A large labeled corpus for
online harassment research. In Proceedings of the
2017 ACM on Web Science Conference, WebSci ’17,
page 229–233, New York, NY, USA. Association for
Computing Machinery.

Lara Grimminger and Roman Klinger. 2021. Hate to-
wards the political opponent: A Twitter corpus study
of the 2020 US elections on the basis of offensive
speech and stance detection. In Proceedings of the
Eleventh Workshop on Computational Approaches to
Subjectivity, Sentiment and Social Media Analysis,
pages 171–180, Online. Association for Computa-
tional Linguistics.

Brendan Kennedy, Mohammad Atari,
Aida Mostafazadeh Davani, Leigh Yeh, Ali
Omrani, Yehsong Kim, Kris Coombs, Shreya Haval-
dar, Gwenyth Portillo-Wightman, Elaine Gonzalez,
Joe Hoover, Aida Azatian, Alyzeh Hussain, Austin
Lara, Gabriel Cardenas, Adam Omary, Christina
Park, Xin Wang, Clarisa Wijaya, Yong Zhang,
Beth Meyerowitz, and Morteza Dehghani. 2022.
Introducing the gab hate corpus: defining and
applying hate-based rhetoric to social media posts
at scale. Language Resources and Evaluation,
56(1):79–108.

Brendan Kennedy, Xisen Jin, Aida Mostafazadeh Da-
vani, Morteza Dehghani, and Xiang Ren. 2020. Con-
textualizing hate speech classifiers with post-hoc ex-
planation. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 5435–5442, Online. Association for Computa-
tional Linguistics.

Pang Wei Koh, Shiori Sagawa, Henrik Mark-
lund, Sang Michael Xie, Marvin Zhang, Akshay
Balsubramani, Weihua Hu, Michihiro Yasunaga,
Richard Lanas Phillips, Irena Gao, et al. 2021. Wilds:
A benchmark of in-the-wild distribution shifts. In
Proceedings of the 38th International Conference on
Machine Learning, volume 139, pages 5637–5664.
PMLR.

https://doi.org/10.18653/v1/W19-3504
https://doi.org/10.1609/icwsm.v11i1.14955
https://doi.org/10.1609/icwsm.v11i1.14955
https://doi.org/10.18653/v1/2020.acl-main.404
https://doi.org/10.18653/v1/2020.acl-main.404
https://doi.org/10.18653/v1/2020.acl-main.404
https://aclanthology.org/2021.wassa-1.6
https://aclanthology.org/2021.wassa-1.6
https://aclanthology.org/2021.wassa-1.6
https://doi.org/10.18653/v1/W18-5102
https://doi.org/10.18653/v1/W18-5102
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1145/3278721.3278729
https://doi.org/10.1145/3278721.3278729
https://doi.org/10.5220/0010266109320940
https://doi.org/10.5220/0010266109320940
https://doi.org/10.5220/0010266109320940
http://jmlr.org/papers/v17/15-239.html
http://jmlr.org/papers/v17/15-239.html
https://doi.org/10.26615/978-954-452-049-6_036
https://doi.org/10.26615/978-954-452-049-6_036
https://doi.org/10.18653/v1/2020.findings-emnlp.301
https://doi.org/10.18653/v1/2020.findings-emnlp.301
https://doi.org/10.18653/v1/2020.findings-emnlp.301
https://doi.org/10.1145/3091478.3091509
https://doi.org/10.1145/3091478.3091509
https://aclanthology.org/2021.wassa-1.18
https://aclanthology.org/2021.wassa-1.18
https://aclanthology.org/2021.wassa-1.18
https://aclanthology.org/2021.wassa-1.18
https://doi.org/10.1007/s10579-021-09569-x
https://doi.org/10.1007/s10579-021-09569-x
https://doi.org/10.1007/s10579-021-09569-x
https://doi.org/10.18653/v1/2020.acl-main.483
https://doi.org/10.18653/v1/2020.acl-main.483
https://doi.org/10.18653/v1/2020.acl-main.483
http://proceedings.mlr.press/v139/koh21a/koh21a.pdf
http://proceedings.mlr.press/v139/koh21a/koh21a.pdf


Sachin Kumar, Shuly Wintner, Noah A. Smith, and Yu-
lia Tsvetkov. 2019. Topics to avoid: Demoting latent
confounds in text classification. In Proceedings of
the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 4153–4163, Hong Kong,
China. Association for Computational Linguistics.

João Augusto Leite, Diego Silva, Kalina Bontcheva,
and Carolina Scarton. 2020. Toxic language detec-
tion in social media for Brazilian Portuguese: New
dataset and multilingual analysis. In Proceedings of
the 1st Conference of the Asia-Pacific Chapter of the
Association for Computational Linguistics and the
10th International Joint Conference on Natural Lan-
guage Processing, pages 914–924, Suzhou, China.
Association for Computational Linguistics.

Jens Lemmens, Ilia Markov, and Walter Daelemans.
2021. Improving Hate Speech Type and Target Detec-
tion with Hateful Metaphor Features. In Proceedings
of the Fourth Workshop on NLP for Internet Free-
dom: Censorship, Disinformation, and Propaganda,
pages 7–16, Online. Association for Computational
Linguistics.

Paula Reyero Lobo, Enrico Daga, and Harith Alani.
2022. Supporting online toxicity detection with
knowledge graphs. In Proceedings of the Interna-
tional AAAI Conference on Web and Social Media,
volume 16, pages 1414–1418.

Thomas Mandl, Sandip Modha, Gautam Kishore Shahi,
Amit Kumar Jaiswal, Durgesh Nandini, Daksh Pa-
tel, Prasenjit Majumder, and Johannes Schäfer. 2020.
Overview of the HASOC track at FIRE 2020: Hate
Speech and Offensive Content Identification in Indo-
European Languages. In Working Notes of FIRE
2020 - Forum for Information Retrieval Evaluation,
pages 87–111, Hyderabad, India. CEUR Workshop
Proceedings.

Thomas Mandl, Sandip Modha, Gautam Kishore Shahi,
Hiren Madhu, Shrey Satapara, Prasenjit Majumder,
Johannes Schäfer, Tharindu Ranasinghe, Marcos
Zampieri, Durgesh Nandini, and Amit Kumar Jaiswal.
2021. Overview of the HASOC Subtrack at FIRE
2021: HateSpeech and Offensive Content Identifi-
cation in English and Indo-Aryan Languages. In
Working Notes of FIRE 2021 - Forum for Informa-
tion Retrieval Evaluation, pages 1–19, India. CEUR
Workshop Proceedings.

Robert McHardy, Heike Adel, and Roman Klinger. 2019.
Adversarial training for satire detection: Controlling
for confounding variables. In Proceedings of the
2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long and
Short Papers), pages 660–665, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Ioannis Mollas, Zoe Chrysopoulou, Stamatis Karlos,
and Grigorios Tsoumakas. 2022. ETHOS: a multi-

label hate speech detection dataset. Complex & Intel-
ligent Systems, 8:4663–4678.

Chikashi Nobata, Joel Tetreault, Achint Thomas, Yashar
Mehdad, and Yi Chang. 2016. Abusive language de-
tection in online user content. In Proceedings of the
25th International Conference on World Wide Web,
WWW ’16, page 145–153, Republic and Canton of
Geneva, CHE. International World Wide Web Con-
ferences Steering Committee.

Flor Miriam Plaza-del-Arco, Sercan Halat, Sebastian
Padó, and Roman Klinger. 2021. Multi-task learning
with sentiment, emotion, and target detection to rec-
ognize hate speech and offensive language. In FIRE
2021 Working Notes, pages 297–318.

Alan Ramponi and Sara Tonelli. 2022. Features or spu-
rious artifacts? data-centric baselines for fair and
robust hate speech detection. In Proceedings of the
2022 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 3027–3040, Seat-
tle, United States. Association for Computational
Linguistics.

Marco Ribeiro, Sameer Singh, and Carlos Guestrin.
2016. “why should I trust you?”: Explaining the pre-
dictions of any classifier. In Proceedings of the 2016
Conference of the North American Chapter of the
Association for Computational Linguistics: Demon-
strations, pages 97–101, San Diego, California. As-
sociation for Computational Linguistics.

Paul Röttger, Bertie Vidgen, Dong Nguyen, Zeerak
Waseem, Helen Margetts, and Janet Pierrehumbert.
2021. HateCheck: Functional tests for hate speech
detection models. In Proceedings of the 59th An-
nual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 41–58, Online. Association for
Computational Linguistics.

Pratik Sachdeva, Renata Barreto, Claudia Von Vacano,
and Chris Kennedy. 2022. Targeted identity group
prediction in hate speech corpora. In Proceedings
of the Sixth Workshop on Online Abuse and Harms
(WOAH), pages 231–244, Seattle, Washington (Hy-
brid). Association for Computational Linguistics.

Mattia Samory, Indira Sen, Julian Kohne, Fabian
Flöck, and Claudia Wagner. 2021. "Call me sexist,
but...": Revisiting sexism detection using psychologi-
cal scales and adversarial samples. In Proceedings of
the Fifteenth International AAAI Conference on Web
and Social Media, ICWSM 2021, held virtually, June
7-10, 2021, pages 573–584. AAAI Press.

Maarten Sap, Dallas Card, Saadia Gabriel, Yejin Choi,
and Noah A. Smith. 2019. The risk of racial bias
in hate speech detection. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, pages 1668–1678, Florence, Italy. Asso-
ciation for Computational Linguistics.

https://doi.org/10.18653/v1/D19-1425
https://doi.org/10.18653/v1/D19-1425
https://aclanthology.org/2020.aacl-main.91
https://aclanthology.org/2020.aacl-main.91
https://aclanthology.org/2020.aacl-main.91
https://aclanthology.org/2021.nlp4if-1.2
https://aclanthology.org/2021.nlp4if-1.2
https://ojs.aaai.org/index.php/ICWSM/article/view/19398/19170
https://ojs.aaai.org/index.php/ICWSM/article/view/19398/19170
http://ceur-ws.org/Vol-2826/T2-1.pdf
http://ceur-ws.org/Vol-2826/T2-1.pdf
http://ceur-ws.org/Vol-2826/T2-1.pdf
http://ceur-ws.org/Vol-3159/T1-1.pdf
http://ceur-ws.org/Vol-3159/T1-1.pdf
http://ceur-ws.org/Vol-3159/T1-1.pdf
https://doi.org/10.18653/v1/N19-1069
https://doi.org/10.18653/v1/N19-1069
https://doi.org/10.1007/s40747-021-00608-2
https://doi.org/10.1007/s40747-021-00608-2
https://doi.org/10.1145/2872427.2883062
https://doi.org/10.1145/2872427.2883062
http://ceur-ws.org/Vol-3159/T1-30.pdf
http://ceur-ws.org/Vol-3159/T1-30.pdf
http://ceur-ws.org/Vol-3159/T1-30.pdf
https://doi.org/10.18653/v1/2022.naacl-main.221
https://doi.org/10.18653/v1/2022.naacl-main.221
https://doi.org/10.18653/v1/2022.naacl-main.221
https://doi.org/10.18653/v1/N16-3020
https://doi.org/10.18653/v1/N16-3020
https://doi.org/10.18653/v1/2021.acl-long.4
https://doi.org/10.18653/v1/2021.acl-long.4
https://doi.org/10.18653/v1/2022.woah-1.22
https://doi.org/10.18653/v1/2022.woah-1.22
https://ojs.aaai.org/index.php/ICWSM/article/view/18085
https://ojs.aaai.org/index.php/ICWSM/article/view/18085
https://ojs.aaai.org/index.php/ICWSM/article/view/18085
https://doi.org/10.18653/v1/P19-1163
https://doi.org/10.18653/v1/P19-1163


Maarten Sap, Saadia Gabriel, Lianhui Qin, Dan Juraf-
sky, Noah A. Smith, and Yejin Choi. 2020. Social
bias frames: Reasoning about social and power im-
plications of language. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 5477–5490, Online. Association
for Computational Linguistics.

Anna Schmidt and Michael Wiegand. 2017. A survey
on hate speech detection using natural language pro-
cessing. In Proceedings of the Fifth International
Workshop on Natural Language Processing for So-
cial Media, pages 1–10, Valencia, Spain. Association
for Computational Linguistics.

Leandro Silva, Mainack Mondal, Denzil Correa, Fabrí-
cio Benevenuto, and Ingmar Weber. 2016. Analyzing
the Targets of Hate in Online Social Media. In Pro-
ceedings of the International AAAI Conference on
Web and Social Media, pages 687–690.

Julia Struß, Melanie Siegel, Josef Ruppenhofer, Michael
Wiegand, and Manfred Klenner. 2019. Overview of
GermEval Task 2, 2019 Shared Task on the Identifi-
cation of Offensive Language. In Proceedings of the
15th Conference on Natural Language Processing
(KONVENS 2019), pages 354–365, Erlangen, Ger-
many. German Society for Computational Linguistics
& Language Technology.

Zeerak Talat, James Thorne, and Joachim Bingel. 2018.
Bridging the Gaps: Multi Task Learning for Do-
main Transfer of Hate Speech Detection. In Jennifer
Golbeck, editor, Online Harassment, pages 29–55.
Springer International Publishing, Cham.

Nanna Thylstrup and Zeerak Talat. 2020. Detecting
‘dirt’and ‘toxicity’: Rethinking content moderation
as pollution behaviour. Available at SSRN 3709719.

Ameya Vaidya, Feng Mai, and Yue Ning. 2020. Em-
pirical analysis of multi-task learning for reducing
identity bias in toxic comment detection. In Proceed-
ings of the International AAAI Conference on Web
and Social Media, volume 14, pages 683–693.

Bertie Vidgen, Scott Hale, Ella Guest, Helen Mar-
getts, David Broniatowski, Zeerak Waseem, Austin
Botelho, Matthew Hall, and Rebekah Tromble. 2020.
Detecting East Asian prejudice on social media. In
Proceedings of the Fourth Workshop on Online Abuse
and Harms, pages 162–172, Online. Association for
Computational Linguistics.

Zeerak Waseem and Dirk Hovy. 2016. Hateful symbols
or hateful people? predictive features for hate speech
detection on Twitter. In Proceedings of the NAACL
Student Research Workshop, pages 88–93, San Diego,
California. Association for Computational Linguis-
tics.

Michael Wiegand, Josef Ruppenhofer, and Thomas
Kleinbauer. 2019. Detection of Abusive Language:
the Problem of Biased Datasets. In Proceedings of
the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:

Human Language Technologies, Volume 1 (Long and
Short Papers), pages 602–608, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Michael Wiegand, Melanie Siegel, and Josef Ruppen-
hofer. 2018. Overview of the GermEval 2018 Shared
Task on the Identification of Offensive Language.
In Proceedings of GermEval 2018, 14th Confer-
ence on Natural Language Processing (KONVENS
2018), pages 1–10, Vienna, Austria. Österreichische
Akademie der Wissenschaften.

Mengzhou Xia, Anjalie Field, and Yulia Tsvetkov. 2020.
Demoting racial bias in hate speech detection. In
Proceedings of the Eighth International Workshop
on Natural Language Processing for Social Media,
pages 7–14, Online. Association for Computational
Linguistics.

Tong Xiang, Sean MacAvaney, Eugene Yang, and Nazli
Goharian. 2021. ToxCCIn: Toxic content classifi-
cation with interpretability. In Proceedings of the
Eleventh Workshop on Computational Approaches to
Subjectivity, Sentiment and Social Media Analysis,
pages 1–12, Online. Association for Computational
Linguistics.

Yihao Xue, Ali Payani, Yu Yang, and Baharan Mirza-
soleiman. 2023. Eliminating spurious correlations
from pre-trained models via data mixing. Preprint,
arXiv:2305.14521.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019a. Predicting the type and target of offensive
posts in social media. In Proceedings of the 2019
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short
Papers), pages 1415–1420, Minneapolis, Minnesota.
Association for Computational Linguistics.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019b. SemEval-2019 Task 6: Identifying and
Categorizing Offensive Language in Social Me-
dia (OffensEval). In Proceedings of the 13th
International Workshop on Semantic Evaluation
(SemEval@NAACL-HLT 2019), pages 75–86.

A Hyperparameter Optimization

Datasets. To limit training time, we select 100k
instances as training data and an additional 50k
instances as validation data to determine a suitable
point for early stopping. The remaining approxi-
mately 255k instances are used for hyperparame-
ter optimization. Optimizing all models with the
described setup takes about a month on a Nvidia
Quadro RTX 8000 GPU. We do not expect using
more than 100k training instances to change the
results of our experiments regarding the compar-
ison of the debiasing methods. To ensure that

https://doi.org/10.18653/v1/2020.acl-main.486
https://doi.org/10.18653/v1/2020.acl-main.486
https://doi.org/10.18653/v1/2020.acl-main.486
https://doi.org/10.18653/v1/W17-1101
https://doi.org/10.18653/v1/W17-1101
https://doi.org/10.18653/v1/W17-1101
https://ojs.aaai.org/index.php/ICWSM/article/view/14811
https://ojs.aaai.org/index.php/ICWSM/article/view/14811
https://corpora.linguistik.uni-erlangen.de/data/konvens/proceedings/papers/germeval/GermEvalSharedTask2019Iggsa.pdf
https://corpora.linguistik.uni-erlangen.de/data/konvens/proceedings/papers/germeval/GermEvalSharedTask2019Iggsa.pdf
https://corpora.linguistik.uni-erlangen.de/data/konvens/proceedings/papers/germeval/GermEvalSharedTask2019Iggsa.pdf
https://doi.org/10.1007/978-3-319-78583-7_3
https://doi.org/10.1007/978-3-319-78583-7_3
http://dx.doi.org/10.2139/ssrn.3709719
http://dx.doi.org/10.2139/ssrn.3709719
http://dx.doi.org/10.2139/ssrn.3709719
https://ojs.aaai.org/index.php/ICWSM/article/view/7334/7188
https://ojs.aaai.org/index.php/ICWSM/article/view/7334/7188
https://ojs.aaai.org/index.php/ICWSM/article/view/7334/7188
https://doi.org/10.18653/v1/2020.alw-1.19
https://doi.org/10.18653/v1/N16-2013
https://doi.org/10.18653/v1/N16-2013
https://doi.org/10.18653/v1/N16-2013
https://doi.org/10.18653/v1/N19-1060
https://doi.org/10.18653/v1/N19-1060
https://www.oeaw.ac.at/fileadmin/subsites/academiaecorpora/PDF/GermEval2018_Proceedings.pdf#page=7
https://www.oeaw.ac.at/fileadmin/subsites/academiaecorpora/PDF/GermEval2018_Proceedings.pdf#page=7
https://doi.org/10.18653/v1/2020.socialnlp-1.2
https://aclanthology.org/2021.wassa-1.1
https://aclanthology.org/2021.wassa-1.1
https://doi.org/10.48550/arXiv.2305.14521
https://doi.org/10.48550/arXiv.2305.14521
https://doi.org/10.18653/v1/N19-1144
https://doi.org/10.18653/v1/N19-1144
https://doi.org/10.18653/v1/s19-2010
https://doi.org/10.18653/v1/s19-2010
https://doi.org/10.18653/v1/s19-2010


this is indeed the case, we trained another TOX
baseline model with a larger subset for training
by splitting the dev set as follows: 80% training,
10% validation-1, 10% validation-2. The resulting
model (being trained on more than three times as
many instances) achieves a slightly improved per-
formance by 1.5 percentage points (F1Tox = .66)
on the same test data. Hence, the chosen split does
not have an impact on our conclusions.

For evaluation, we use the combined public and
private test datasets from the Jigsaw Unintended
Bias in Toxicity Classification challenge which
does allow a straightforward comparison with past
and future work.

We constrain input text instances to a maximum
length of 236 tokens. This value corresponds to
the 99th percentile of instance lengths in the de-
velopment set. Thus, only 1% of the instances are
truncated.

To deal with the skewed class distribution, we
use class weights based on the inverse class fre-
quency in the training data for all attributes in each
loss.

Early stopping configuration. While all our se-
tups operate with the same model, we monitor
only relevant performance measures for each setup.
Early stopping for the TOX setup monitors only
the performance of the Tox classifier. In the joint
setup, early stopping is based on toxicity and any
active identity term classifiers in combination (all
classifiers weighted equally). In the adversarial
setups, early stopping is determined by monitor-
ing the sum of the Tox classifier performance (or
all MTL classifiers) and the negated adversary’s
performance (weighted by 0.1).

We use early stopping with patience = 3 and
reload the best model if the maximum of 10 epochs
is reached.

Training process metadata. On the mentioned
data, our model trains for approximately 32 min-
utes per epoch on a single GPU (Nvidia Quadro
RTX 8000). Each model has approximately 109
million trainable parameters.

Learning rate optimization. We run each ex-
periment with different learning rates lr ∈ {5 ·
10−6, 7.5 ·10−6, 1 ·10−5, 2.5 ·10−5, 5 ·10−5}. For
optimization we select the best lr value for each
model according to its performance on the por-
tion of the dataset which has not been used during
training (255k instances). As performance mea-

O + O − Total

Tox + 27,963 (61%) 18,072 46,035
Tox − 142,341 (40%) 216,754 359,095

Total 170,304 (42%) 234,826 405,130

Table 4: Distribution of binary toxicity and identity term
annotations in the development set from the CivilCom-
ments dataset (Borkan et al., 2019). The percentages are
respectively the proportion of instances with identities
to the total instances for each row.

sure we calculate the toxicity F1 score, possibly
(if the model uses joint MTL) add F1 scores for
joint MTL identity term classifiers and possibly (if
the model uses an adversary) subtract the F1 score
of the adversarial task. Since our main goal is to
optimize the toxicity detection performance, we
multiply the F1 scores of the identity classifiers by
a reduced weight of 0.1 in this measure.

B CivilComments Data

Table 4 shows the distribution of binary toxicity
and identity term annotations in the development
set from the CivilComments dataset (Borkan et al.,
2019). This suggests a correlation between toxicity
and mentions of identity terms, as toxic instances
contain identity terms in 61% of instances, but only
40% of non-toxic instances.

C Full Results

The performance of the models with optimized
learning rate (cf. Appendix A) on the test dataset
is displayed in Table 5. In addition to the perfor-
mance scores shown in Table 2, this table provides
the results for several models for each setup with
different λx values as well as some further setups
with other combinations of the hierarchical identity
classifiers. Table 2 only shows the best-performing
corrected models based on the in-distribution test
set performance with high F1Tox and low respec-
tive identity detection F1 for each setting (see un-
derlined values in Table 5). The additional setups
included in Table 5 which are not directly related
to our research questions are briefly motivated in
the following.

We additionally test a setting where we are
correcting for both Identity and Class (λ2, λ3 ∈
{0.10, 0.25, 0.50, 1.00}, Model Tox−C−I). This
setting is based on the assumption that a combined
correction for both C and I could capture the more



Model λ1 λ2 λ3 F1(1)Tox F1(1)O F1(5)C F1(24)I

TOX (baseline) 0 0 0 .64 .59 .25 .07

RT (2022) 0 0 0 .55 .45 .13 .03

Id
en

tit
y

O
cc

ur
re

nc
e Tox+O −1 — — .63 .93

Tox−O 0.10 — — .64 .34
Tox−O 0.25 — — .64 .33
Tox−O 0.50 — — .64 .16
Tox−O 1.00 — — .63 .05

Id
en

tit
y

C
la

ss

Tox+C — −1 — .63 (.92) .87
Tox−C — 0.10 — .64 (.55) .09
Tox−C — 0.25 — .63 (.52) .06
Tox−C — 0.50 — .64 (.58) .11
Tox−C — 1.00 — .64 (.51) .09

Id
en

tit
y

Tox+I — — −1 .64 (.90) (.77) .39
Tox−I — — 0.10 .63 (.58) (.20) .05
Tox−I — — 0.25 .64 (.58) (.15) .03
Tox−I — — 0.50 .63 (.58) (.17) .01
Tox−I — — 1.00 .63 (.58) (.21) .02

C
la

ss
an

d
Id

en
tit

y Tox−C−I — 0.10 0.10 .64 (.48) .08 .03
Tox−C−I — 0.25 0.25 .64 (.53) .05 .02
Tox−C−I — 0.50 0.50 .63 (.57) .14 .02
Tox−C−I — 1.00 1.00 .62 (.52) .10 .01

al
ll

ev
el

s

Tox+O+C+I −1 −1 −1 .64 .93 .86 .38

Tox−O−C−I 0.10 0.10 0.10 .64 .19 .13 .04
Tox−O−C−I 0.25 0.25 0.25 .63 .21 .13 .03
Tox−O−C−I 0.50 0.50 0.50 .64 .22 .06 .02
Tox−O−C−I 1.00 1.00 1.00 .63 .05 .10 .01

Tox+O, C, I −1 0 0 .63 .93 .34 .10
Tox+O−C−I −1 0.10 0.10 .64 .93 .32 .08
Tox+O−C−I −1 0.25 0.25 .64 .93 .30 .08
Tox+O−C−I −1 0.50 0.50 .63 .93 .27 .07
Tox+O−C−I −1 1.00 1.00 .63 .93 .26 .06

Tox+O+C, I −1 −1 0 .64 .93 .88 .27
Tox+O+C−I −1 −1 0.10 .63 .93 .87 .25
Tox+O+C−I −1 −1 0.25 .63 .93 .88 .25
Tox+O+C−I −1 −1 0.50 .63 .93 .86 .24
Tox+O+C−I −1 −1 1.00 .63 .93 .85 .22
Tox+O+C−I −1 −1 2.00 .61 .93 .81 .20
Tox+O+C−I −1 −1 3.00 .61 .92 .67 .10

Table 5: Performance of optimized models on the test dataset. We display F1 for the positive classes across all
variables. The values in the superscript of the F1 scores specify the number of classes evaluated in each task – for
multi-label tasks (Class and Identity) we display the macro-average F1 over all positive class label F1 scores. In the
column “Model”, “+” marks joint classification, “−” marks adversaries and classifiers appended with “,” do not
have an effect on the encoder. Tox refers to the toxicity classifier. (O)ccurrence, (C)lass and (I)dentity refer to the
classifiers for the three levels of the identity term label hierarchy according to our model (see Figure 2). Values in
parentheses are inferred from the prediction of more fine-grained labels. Underlined λ values mark the best debiased
model for each setting.



Id Reference Description Size

da Davidson et al. (2017) Tweets annotated for hate speech and offensive lan-
guage

24,783

ol Zampieri et al. (2019a) Tweets annotated for offensive content (OLID) 860
ha Mandl et al. (2021) Tweets annotated for hate speech and other offen-

sive and objectionable content (HASOC 2021)
1,281

se Samory et al. (2021) Tweets annotated for sexism with predicted toxicity
scores (CMSB)

13,631

sf de Gibert et al. (2018) Texts extracted from a white supremacy forum
(Stormfront)

478

gk Grimminger and Klinger (2021) Political Twitter data annotated for hate-
ful/offensive speech

600

as Vidgen et al. (2020) Tweets annotated for hostility directed against
Asian people

40,000

et Mollas et al. (2022) YouTube and Reddit comments annotated for hate
speech (ETHOS)

998

hc Röttger et al. (2021) Crafted test cases for hate speech detection (Hate-
Check)

3,728

Table 6: Hate speech datasets used as additional test data to evaluate out-of-distribution performance. We show the
number of instances we use for evaluation in the last column.

general set of features on the one hand, which are
also sufficiently specific properties of identities on
the other. We hypothesize that this setting will lead
to a more comprehensive mitigation of the identity
term bias than the experimental design with single
adversaries.

Further, we test additional setups with all
three levels, where we explore combinations
incorporating the Occurrence classifier as ad-
versary (λ1 ∈ {0.10, 0.25, 0.50, 1.00}, Model
Tox−O−C−I). Here we test whether the additional
correction for O does not contribute to a broader
mitigation of the target identity term bias that we
are aiming for and might harm the overall toxicity
detection performance.

Additionally, we explore the configuration where
we only correct for identity features while jointly
promoting Occurrence and Class information
(Model Tox+O+C−I). The idea behind this is that
we may want to let the model represent features of
the target occurrence as well as some distinguish-
ing features of identity classes. There could be
substantial differences in the type of toxicity that
targets certain groups compared to other types of
toxicity that target other groups. Therefore, we
want to enable co-learning of such properties of
identities in this setup. Here, we also test higher
weights (λ3 ∈ {0.10, 0.25, 0.50, 1.00, 2.00, 3.00})
to empower the Identity adversary to possibly out-

weigh the three joint classifiers which presumably
induce identity bias. A more powerful adversary
on the lowest level might be sucessful at unlearning
specific features of identities which constitute the
target bias and result in an improved generalization
ability of the trained model. However, by includ-
ing the classifiers O and C jointly with the toxicity
classifier, this model could still retain the ability
to learn more general categories of targets of toxic
statements.

D Cross-Corpus Evaluation

We evaluate the performance of different models
trained on the CivilComments dataset to predict
hate speech on other datasets. We show the datasets
that we use in Table 6. We selected publicly avail-
able datasets covering general types of hate speech
and toxicity as well as datasets with a focus on
specific subtypes, such as hate speech directed to-
wards specific targets. In cases where the original
authors declare a specific portion of the data as a
test subset, we only use this portion in our evalua-
tion. Otherwise we evaluate on the entire dataset.

The results for the out-of-distribution hate
speech and toxicity detection performance are dis-
played in Table 7. The performance of all models
on the ‘gk’ and ‘as’ datasets is rather low (F1 ≤
.30), presumably because these corpora are focused



Performance on test data

Out-of-domain

Model IN da ol ha se sf gk as et hc avg.

TOX (baseline) .64 .88 .64 .70 .69 .63 .30 .22 .70 .76 .61

RT (2022) .55
∆−.09

.88
∆.00

.61
∆−.03

.71
∆+.01

.65
∆−.04

.51
∆−.12

.26
∆−.04

.16
∆−.06

.62
∆−.08

.60
∆−.16

.56
∆−.05

Tox−O .63
∆−.01

.87
∆−.01

.62
∆−.02

.68
∆−.02

.69
∆.00

.66
∆+.03

.22
∆−.08

.17
∆−.05

.71
∆+.01

.74
∆−.02

.60
∆−.01

Tox−I .63
∆−.01

.88
∆.00

.64
∆.00

.70
∆.00

.70
∆+.01

.67
∆+.04

.24
∆−.06

.19
∆−.03

.72
∆+.02

.76
∆.00

.61
∆.00

Tox+O+C−I .63
∆−.01

.88
∆.00

.66
∆+.02

.72
∆+.02

.69
∆.00

.65
∆+.02

.21
∆−.09

.21
∆−.01

.71
∆+.01

.75
∆−.01

.61
∆.00

Tox+O−C−I .64
∆.00

.88
∆.00

.66
∆+.02

.71
∆+.01

.70
∆+.01

.62
∆−.01

.21
∆−.09

.17
∆−.05

.71
∆+.01

.76
∆.00

.60
∆−.01

Table 7: Hate speech/toxicity detection performance (F1 for the positive class) of our best corrected models in
comparison to the baseline TOX model on different datasets. All models have been trained on the same data.
∆-values show the difference to the F1 score of the baseline model TOX. IN refers to the in-distribution test
dataset performance of the CivilComments corpus and avg. refers to the macro-average of all out-of-distribution
performances.

Test dataset: Identity-specific subsets

Full test fema male chri whit musl blac homo jewi psyc asia athe tran lati hete
# test instances: 42870 5155 4386 4226 2452 2040 1519 1065 835 511 454 280 260 225 141

Model F1(1)Tox F1(1)Tox F1(1)Tox F1(1)Tox F1(1)Tox F1(1)Tox F1(1)Tox F1(1)Tox F1(1)Tox F1(1)Tox F1(1)Tox F1(1)Tox F1(1)Tox F1(1)Tox F1(1)Tox

TOX (baseline) .64 .62 .61 .60 .63 .59 .65 .62 .62 .65 .53 .52 .63 .62 .52

RT (2022) .55
∆−.09

.56
∆−.06

.54
∆−.07

.45
∆−.15

.53
∆−.10

.39
∆−.20

.52
∆−.13

.45
∆−.17

.51
∆−.11

.58
∆−.07

.30
∆−.23

.47
∆−.05

.62
∆−.01

.49
∆−.13

.45
∆−.07

Tox−O .63
∆−.01

.62
∆.00

.61
∆.00

.57
∆−.03

.62
∆−.01

.58
∆−.01

.64
∆−.01

.61
∆−.01

.60
∆−.02

.69
∆+.04

.53
∆.00

.59
∆+.07

.63
∆+.01

.63
∆+.01

.52
∆.00

Tox−I .63
∆−.01

.62
∆.00

.62
∆+.01

.59
∆−.01

.65
∆+.02

.59
∆.00

.66
∆+.01

.61
∆−.01

.64
∆+.02

.67
∆+.02

.50
∆−.03

.55
∆+.03

.56
∆−.06

.69
∆+.07

.51
∆−.01

Tox+O+C−I .63
∆−.01

.62
∆.00

.61
∆.00

.59
∆−.01

.65
∆+.02

.59
∆.00

.67
∆+.02

.59
∆−.03

.63
∆+.01

.66
∆+.01

.54
∆+.01

.62
∆+.10

.63
∆+.01

.68
∆+.06

.46
∆−.06

Tox+O−C−I .64
∆.00

.63
∆+.01

.62
∆+.01

.59
∆−.01

.64
∆+.01

.60
∆+.01

.66
∆+.01

.61
∆−.01

.57
∆−.05

.70
∆+.05

.58
∆+.05

.48
∆−.04

.67
∆+.04

.65
∆+.03

.51
∆−.01

Table 8: Performance of best models on different portions of the test dataset. ∆-values show the difference to
the F1 score of the baseline model TOX. Fema: female, chri: christian, whit: white, musl: muslim, blac: black,
homo: homosexual gay or lesbian, jewi: jewish, psyc: psychiatric or mental illness, asia: asian, athe: atheist, tran:
transgender, lati: latino, hete: heterosexual.

on special cases of hate speech (towards specific
individuals or particular ethnicities).

E Evaluation of Identity-Specific Subsets

Table 8 shows the F1 scores of the baseline TOX
model in comparison to the debiased baseline RT
(2022) and our corrected models for these different
portions of the test dataset. We additionally provide
the number of instances which are considered in
each subset. We discard all identity labels with less
than 100 instances in the test dataset in this evalu-
ation as there is presumably not enough statistical
evidence for such categories.
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